If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=2x+4.905x^2
We move all terms to the left:
50-(2x+4.905x^2)=0
We get rid of parentheses
-4.905x^2-2x+50=0
a = -4.905; b = -2; c = +50;
Δ = b2-4ac
Δ = -22-4·(-4.905)·50
Δ = 985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-\sqrt{985}}{2*-4.905}=\frac{2-\sqrt{985}}{-9.81} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+\sqrt{985}}{2*-4.905}=\frac{2+\sqrt{985}}{-9.81} $
| 0.75+0.50x+2=0 | | (3x-10)=(7x+90) | | 3n+11=2n+4 | | 9(h-6)=4(h+9) | | -6(t+4)=18 | | 4e+6=-8 | | 5y-6=17y | | Y=3.6x-2.8 | | -2(x-1)+3x=3 | | s+22+18=133 | | 5(3x+1)=10(2x-1) | | s-22-18=133 | | (2x-8)+3x=32 | | .(2x-8)+3x=32 | | -5(z-6)+5z=36-z | | 2(x-7/5)=3/5x-21/25 | | 0=4.9t^2+23.2849t+5 | | 6x+2=-9(x-4) | | 40x+135x=36x | | 5x-2*(2x+1)=3*(x-1) | | -8n+40=-4(3+8n)+4 | | 12y-8y=0 | | 3x+32-7x=2(5x+10) | | 5x-82=100 | | 6.3=2n-4 | | 13=s/3+4 | | 7(2v-3)=-32 | | -5=4.9t^2=23.2849t | | 15=y/3y+6 | | 2/5x-5/8x=26 | | 7g(-5+3)=28 | | 5y-0.14285714285+12=1 |